raigBuche -04-
@CraigBuchek 2017-04-21

Smaller!

Craig Buchek

1/44

http://boochtek.com/aatc2017

@CraigBuchek 2017-04-21

About Me

il
/\@_@; Craig Buchek

BoochTek

This _

cicrile
qe%

2/44

http://craigbuchek.com/
https://www.boochtek.com/
http://www.thisagilelife.com/

@CraigBuchek 2017-04-21

Obligatory Cat Picture

= B

P

L Ne

3/44

raigBuche -04-
@CraigBuchek 2017-04-21

Smaller - Why?

e Focus on what's valuable
e Focus on task at hand
o |t's easier to focus on smaller things
o We get bored when we work too long on a single
thing
e Builds momentum
e Easier to modify
e Easier to throw away
e Smaller code usually runs faster
o Does less

o Fits in cache better

4/ 44

@CraigBuchek 2017-04-21

Smaller - What?

o Stories
e Jests

e Methods
o Classes
e Commits
e Releases

o/ 44

@CraigBuchek 2017-04-21

Smaller - How?

e Story splitting
e Better tests
e Refactoring
e Discipline

6/44

raigBuche -04-
@CraigBuchek 2017-04-21

Smaller Stories - Why?

e Smaller stories can be estimated more easily
e Smaller stories can be completed quicker

o Delivers value quicker

o Making quicker progress leads to more progress
o |t's easier to realize you don't need a smaller story

//44

@CraigBuchek 2017-04-21

Smaller Stories - How?

e Thin vertical slices
e Story splitting
e Minimal Marketable Feature (MMF)
e One acceptance criteria per story
o INVEST
o Independent
o Negotiable
o Valuable
o Estimable
o Small

o Testable

8 /44

@CraigBuchek 2017-04-21

Vertically Sliced Increments

Not like this....

& © © @
© 00 T G

4

Like thig!

9/44

@CraigBuchek 2017-04-21

Thin Vertical Slices - Login

As a user,
| want to log in,
So that | can use the app

Given an existing user account
When | log in with correct credentials
Then | should be logged in

Given an existing user account

When | log in with incorrect credentials
Then | should see an error message
And | should not be logged in

10/ 44

@CraigBuchek 2017-04-21

Thin Vertical Slices - Point of Sale

As a customer,
| want to buy something from the store,
So that | can take it home and use it

When | take something to the cash register

And the cashier rings it up

Then the cash register should look up the price

And tax should be added

And | should be able to pay by cash, check, or credit card
And a receipt should be printed

And inventory should be updated

11/ 44

@CraigBuchek 2017-04-21

Smaller Tests

e Arrange, Act, Assert
o Do as little as possible in each step
e One assertion per test
o Better understanding of the problem
e Focus on the problem before thinking about solutions
e |f you nest describe blocks:
o Put your initial state on the outside
e Discipline

12/ 44

@CraigBuchek 2017-04-21

Refactoring

Modifying code to improve its internal structure, without
changing its external behavior, in order to make it easier to
understand and cheaper to modify

13/ 44

@CraigBuchek 2017-04-21

Refactoring

Modifying code to improve its internal structure, without
changing its external behavior, in order to make it easier to

understand and cheaper to modify

14/ 44

@CraigBuchek 2017-04-21

Refactoring

Modifying code to improve its internal structure, without
changing its external behavior, in order to make it easier to
understand and cheaper to modify

15/ 44

@CraigBuchek 2017-04-21

Refactoring

Modifying code to improve its internal structure, without
changing its external behavior, in order to make it easier to
understand and cheaper to modify

16/ 44

@CraigBuchek

17/ 44

Refactoring

Modifying code to im
changing its external
understand and chea

orove its internal structure, without
nehavior, in order to make it easier to

ner to modify

2017-04-21

@CraigBuchek 2017-04-21

Refactoring

Modifying code to improve its internal structure, without
changing its external behavior, in order to make it easier to
understand and cheaper to modify

18/ 44

@CraigBuchek 2017-04-21

Refactoring - Canonical Reference

ReEeracToriNG

IMPROVING THE DESIGN
OF EXISTING CODE

MARTIN FOWLER

With contri by Kent Beck, John Brant,
William Op lyk d Don Roberts

Erich Gamma

19/ 44

@CraigBuchek 2017-04-21

Why Refactor?

o Readability
e Simplification
o DRY - Don't Repeat Yourself
o SRP - Single Responsibility Principle
e Improved extensibility
e Maintainability
e Reduced bugs
e Improved performance

20/ 44

@CraigBuchek 2017-04-21

When To Refactor

e Before making requested changes
o To clarify what's going on
o After adding requested changes
o Red, Green, Refactor
e When you realize you've got too much tech debt
e When you see something that's a problem

21/44

@CraigBuchek 2017-04-21

What Do | Need to Refactor?

e Knowing what code needs refactoring

o Tests for the code in question

e Knowing what refactorings are available
e Automated refactoring tools (optional)

22/44

@CraigBuchek 2017-04-21

Refactorings Have Names

e Extract Method

e Move Method

e Extract Variable

e Inline Temp

e Replace Parameter with Method

Catalog of refactorings: https://refactoring.com/catalog/

23/44

https://refactoring.com/catalog/

@CraigBuchek 2017-04-21

How Do | Know What To Refactor?

e Code "smells”
e Heuristics
o Sandi Metz's rules
e Your own gut feelings from experience
o Test "smells”

24 / 44

@CraigBuchek 2017-04-21

Code Smells

e Duplicated code

e God class

e Feature envy

e Too many parameters
e Long method

e Comment

25/ 44

@CraigBuchek 2017-04-21

Code Smells

e Duplicated code

e God class

e Feature envy

e Too many parameters
e Long method

e Comment

26/ 44

@CraigBuchek 2017-04-21

Code Smells

e Duplicated code

e God class

e Feature envy

e Too many parameters
e Long method

e Comment

27744

@CraigBuchek 2017-04-21

Code Smells

e Duplicated code

e God class

e Feature envy

e Too many parameters
e Long method

e Comment

28/44

@CraigBuchek 2017-04-21

Test Smells

e Too many collaborators

e Tests mirror code too closely
e Fragile tests

e Slow tests

o |f your tests are hard to write, your code is probably too
complex

29/ 44

@CraigBuchek

30/44

Sandi Metz's Rules

1. Classes should

2. Methods s
3. Methods s
o Hash o

nould

e no longer than 100 lines of code
be no longer than 5 lines of code

nould

take no more than 4 parameters

ptions count as parameters

4. Break the rules only if you can convince your pair

2017-04-21

CraigBuchek 2017-04-21
@

When Am | Done Refactoring?

e When code is as clear as possible
e You're likely not overdoing it
o When every method is 1 line long
o Preferably with no ifs
e When you meet the Sandi Metz metrics
e When you meet the Four Rules of Simple Design
o Passes the tests
o Reveals intention
o No duplication

o Fewest elements

31/ 44

@CraigBuchek

Smaller Methods

e Should do one thing
e Refactoring
o Extract Method
o Replace Parameter with Method
o Decompose Conditional
o Replace Conditional with Polymorphism
o Introduce Null Object
e Use more declarative terms
o Don't pretend to tell when you're asking
= Don't use get or compute methods
e Don't have methods that pre-compute values
o Just ask for the value when you need. it

gSLae = Memoize if necessary

2017-04-21

@CraigBuchek 2017-04-21

Smaller Methods - Booleans

e Original

def deletable?
if sequential_approvers_enabled?
lanswered?
else
true
end
end

33/44

@CraigBuchek 2017-04-21

Smaller Methods - Booleans

e Amos's partial refactoring

def deletable?
l(sequential_approvers_enabled? && answered?)
end

OR

def deletable?
Isequential_approvers_enabled? Il lanswered?
end

34/ 44

@CraigBuchek 2017-04-21

Smaller Methods - Booleans

e Amos's suggested refactoring

def deletable?
sequential_approvers_disabled? |l unanswered?
end

def unanswered?
lanswered?
end

def sequential_approvers_disabled?
Isequential_approvers_enabled?
end

35/ 44

@CraigBuchek 2017-04-21

Smaller Classes

e Single Responsibility Principle (SRP)

o A class should have only one reason to change
e Remove duplication (DRY)
e Refactoring

o Extract Class

o Extract Superclass / Subclass

o Extract Interface

36/44

@CraigBuchek 2017-04-21

Smaller Commits - Why?

e Rolling back an atomic unit
e (it bisect

37/44

@CraigBuchek 2017-04-21

Smaller Releases - Why?

e Less to go wrong
e Practice makes perfect

38/44

@CraigBuchek 2017-04-21

Smaller Releases - How?

e Build confidence with customers and management
e Release bug fixes "out of band"

e Show that smaller changes are less risky

o Keep decreasing time between releases

39/44

@CraigBuchek

What Else?

e Meetings!
e Feedback loops
e Pair-switching
o Every 2 hours
o Every hour?
o Others?

40 / 44

2017-04-21

@CraigBuchek 2017-04-21

Exceptions to the Rule

e Time spent with the customer
e Commit messages
e Others?

41/ 44

@CraigBuchek 2017-04-21

Workshop

https://github.com/boochtek/aatc2017

42 / 44

https://github.com/boochtek/aatc2017

@CraigBuchek 2017-04-21

Thanks

43/ 44

@CraigBuchek 2017-04-21

Feedback

e Twitter: @CraigBuchek

e Email: craig@boochtek.com

e Slides: http://boochtek.com/aatc2017

44 / 44

https://twitter.com/CraigBuchek
https://github.com/booch
http://boochtek.com/aatc2017
http://remarkjs.com/

