
Smaller!
Craig	Buchek

http://boochtek.com/aatc2017

http://boochtek.com/aatc2017

About	Me

	Craig	Buchek

	BoochTek

	This	Agile	Life

http://craigbuchek.com/
https://www.boochtek.com/
http://www.thisagilelife.com/

Obligatory	Cat	Picture

Smaller	-	Why?

Focus	on	what's	valuable

Focus	on	task	at	hand

It's	easier	to	focus	on	smaller	things

We	get	bored	when	we	work	too	long	on	a	single

thing

Builds	momentum

Easier	to	modify

Easier	to	throw	away

Smaller	code	usually	runs	faster

Does	less

Fits	in	cache	better

Smaller	-	What?

Stories

Tests

Methods

Classes

Commits

Releases

Smaller	-	How?

Story	splitting

Better	tests

Refactoring

Discipline

Smaller	Stories	-	Why?

Smaller	stories	can	be	estimated	more	easily

Smaller	stories	can	be	completed	quicker

Delivers	value	quicker

Making	quicker	progress	leads	to	more	progress

It's	easier	to	realize	you	don't	need	a	smaller	story

Smaller	Stories	-	How?

Thin	vertical	slices

Story	splitting

Minimal	Marketable	Feature	(MMF)

One	acceptance	criteria	per	story

INVEST

Independent

Negotiable

Valuable

Estimable

Small

Testable

Vertically	Sliced	Increments

Thin	Vertical	Slices	-	Login

As a user,
I want to log in,
So that I can use the app

Given an existing user account
When I log in with correct credentials
Then I should be logged in

Given an existing user account
When I log in with incorrect credentials
Then I should see an error message
And I should not be logged in

Thin	Vertical	Slices	-	Point	of	Sale

As a customer,
I want to buy something from the store,
So that I can take it home and use it

When I take something to the cash register
And the cashier rings it up
Then the cash register should look up the price
And tax should be added
And I should be able to pay by cash, check, or credit card
And a receipt should be printed
And inventory should be updated

Smaller	Tests

Arrange,	Act,	Assert

Do	as	little	as	possible	in	each	step

One	assertion	per	test

Better	understanding	of	the	problem

Focus	on	the	problem	before	thinking	about	solutions

If	you	nest	describe	blocks:
Put	your	initial	state	on	the	outside

Discipline

Refactoring

Modifying	code	to	improve	its	internal	structure,	without

changing	its	external	behavior,	in	order	to	make	it	easier	to

understand	and	cheaper	to	modify

Refactoring

Modifying	code	to	improve	its	internal	structure,	without

changing	its	external	behavior,	in	order	to	make	it	easier	to

understand	and	cheaper	to	modify

Refactoring

Modifying	code	to	improve	its	internal	structure,	without

changing	its	external	behavior,	in	order	to	make	it	easier	to

understand	and	cheaper	to	modify

Refactoring

Modifying	code	to	improve	its	internal	structure,	without

changing	its	external	behavior,	in	order	to	make	it	easier	to

understand	and	cheaper	to	modify

Refactoring

Modifying	code	to	improve	its	internal	structure,	without

changing	its	external	behavior,	in	order	to	make	it	easier	to

understand	and	cheaper	to	modify

Refactoring

Modifying	code	to	improve	its	internal	structure,	without

changing	its	external	behavior,	in	order	to	make	it	easier	to

understand	and	cheaper	to	modify

Refactoring	-	Canonical	Reference

Why	Refactor?

Readability

Simplification

DRY	-	Don't	Repeat	Yourself

SRP	-	Single	Responsibility	Principle

Improved	extensibility

Maintainability

Reduced	bugs

Improved	performance

When	To	Refactor

Before	making	requested	changes

To	clarify	what's	going	on

After	adding	requested	changes

Red,	Green,	Refactor

When	you	realize	you've	got	too	much	tech	debt

When	you	see	something	that's	a	problem

What	Do	I	Need	to	Refactor?

Knowing	what	code	needs	refactoring

Tests	for	the	code	in	question

Knowing	what	refactorings	are	available

Automated	refactoring	tools	(optional)

Refactorings	Have	Names

Extract	Method

Move	Method

Extract	Variable

Inline	Temp

Replace	Parameter	with	Method

Catalog	of	refactorings:	https://refactoring.com/catalog/

https://refactoring.com/catalog/

How	Do	I	Know	What	To	Refactor?

Code	"smells"

Heuristics

Sandi	Metz's	rules

Your	own	gut	feelings	from	experience

Test	"smells"

Code	Smells

Duplicated	code

God	class

Feature	envy

Too	many	parameters

Long	method

Comment

Code	Smells

Duplicated	code

God	class

Feature	envy

Too	many	parameters

Long	method

Comment

Code	Smells

Duplicated	code

God	class

Feature	envy

Too	many	parameters

Long	method

Comment

Code	Smells

Duplicated	code

God	class

Feature	envy

Too	many	parameters

Long	method

Comment

Test	Smells

Too	many	collaborators

Tests	mirror	code	too	closely

Fragile	tests

Slow	tests

If	your	tests	are	hard	to	write,	your	code	is	probably	too

complex

Sandi	Metz's	Rules

1.	 Classes	should	be	no	longer	than	100	lines	of	code

2.	 Methods	should	be	no	longer	than	5	lines	of	code

3.	 Methods	should	take	no	more	than	4	parameters

Hash	options	count	as	parameters

4.	 Break	the	rules	only	if	you	can	convince	your	pair

When	Am	I	Done	Refactoring?

When	code	is	as	clear	as	possible

You're	likely	not	overdoing	it

When	every	method	is	1	line	long

Preferably	with	no	ifs
When	you	meet	the	Sandi	Metz	metrics

When	you	meet	the	Four	Rules	of	Simple	Design

Passes	the	tests

Reveals	intention

No	duplication

Fewest	elements

Smaller	Methods

Should	do	one	thing

Refactoring

Extract	Method

Replace	Parameter	with	Method

Decompose	Conditional

Replace	Conditional	with	Polymorphism

Introduce	Null	Object

Use	more	declarative	terms

Don't	pretend	to	tell	when	you're	asking

Don't	use	get	or	compute	methods

Don't	have	methods	that	pre-compute	values

Just	ask	for	the	value	when	you	need	it

Memoize	if	necessary

Smaller	Methods	-	Booleans

Original

def deletable?
 if sequential_approvers_enabled?
 !answered?
 else
 true
 end
end

Smaller	Methods	-	Booleans

Amos's	partial	refactoring

def deletable?
 !(sequential_approvers_enabled? && answered?)
end

OR

def deletable?
 !sequential_approvers_enabled? || !answered?
end

Smaller	Methods	-	Booleans

Amos's	suggested	refactoring

def deletable?
 sequential_approvers_disabled? || unanswered?
end

def unanswered?
 !answered?
end

def sequential_approvers_disabled?
 !sequential_approvers_enabled?
end

Smaller	Classes

Single	Responsibility	Principle	(SRP)

A	class	should	have	only	one	reason	to	change

Remove	duplication	(DRY)

Refactoring

Extract	Class

Extract	Superclass	/	Subclass

Extract	Interface

Smaller	Commits	-	Why?

Rolling	back	an	atomic	unit

git bisect

Smaller	Releases	-	Why?

Less	to	go	wrong

Practice	makes	perfect

Smaller	Releases	-	How?

Build	confidence	with	customers	and	management

Release	bug	fixes	"out	of	band"

Show	that	smaller	changes	are	less	risky

Keep	decreasing	time	between	releases

What	Else?

Meetings!

Feedback	loops

Pair-switching

Every	2	hours

Every	hour?

Others?

Exceptions	to	the	Rule

Time	spent	with	the	customer

Commit	messages

Others?

Workshop

https://github.com/boochtek/aatc2017

https://github.com/boochtek/aatc2017

Thanks

Feedback

Twitter:	@CraigBuchek

GitHub:	booch

Email:	craig@boochtek.com

Slides:	http://boochtek.com/aatc2017

Remark	presentation	software

https://twitter.com/CraigBuchek
https://github.com/booch
http://boochtek.com/aatc2017
http://remarkjs.com/

